METRIC DIOPHANTINE APPROXIMATION FOR SYSTEMS OF LINEAR FORMS VIA DYNAMICS
نویسندگان
چکیده
منابع مشابه
Metric Diophantine Approximation for Systems of Linear Forms via Dynamics
The goal of this paper is to generalize the main results of [KM1] and subsequent papers on metric Diophantine approximation with dependent quantities to the set-up of systems of linear forms. In particular, we establish ‘joint strong extremality’ of arbitrary finite collection of smooth nondegenerate submanifolds of R. The proofs are based on quantitative nondivergence estimates for quasi-polyn...
متن کاملDiophantine Approximation of Ternary Linear Forms . II
Let 6 denote the positive root of the equation xs + x2 — 2x — 1 = 0; that is, 8 = 2 cos(27r/7). The main result of the paper is the evaluation of the constant lim supm-co min M2\x + By + 02z|, where the min is taken over all integers x, y, z satisfying 1 g max (\y\, |z|) g M. Its value is (29 + 3),/7 = .78485. The same method can be applied to other constants of the same type.
متن کاملMetric Diophantine approximation and dynamical systems
The introductory part will feature: rate of approximation of real numbers by rationals; theorems of Kronecker, Dirichlet, Liouville, Borel-Cantelli; connections with dynamical systems: circle rotations, hyperbolic flow in the space of lattices, geodesic flow on the modular survace, Gauss map (continued fractions); ergodicity, unique ergodicity, mixing, applications to uniform distribution of se...
متن کاملModified Linear Approximation for Assessment of Rigid Block Dynamics
This study proposes a new linear approximation for solving the dynamic response equations of a rocking rigid block. Linearization assumptions which have already been used by Hounser and other researchers cannot be valid for all rocking blocks with various slenderness ratios and dimensions; hence, developing new methods which can result in better approximation of governing equations while keepin...
متن کاملClassical metric Diophantine approximation revisited
The idea of using measure theoretic concepts to investigate the size of number theoretic sets, originating with E. Borel, has been used for nearly a century. It has led to the development of the theory of metrical Diophantine approximation, a branch of Number Theory which draws on a rich and broad variety of mathematics. We discuss some recent progress and open problems concerning this classica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Number Theory
سال: 2010
ISSN: 1793-0421,1793-7310
DOI: 10.1142/s1793042110003423